Aerospace Data Storage and Processing Systems

Unifying Spacecraft Payload Interconnects Using the Reprogrammable Space Network Interface Controller

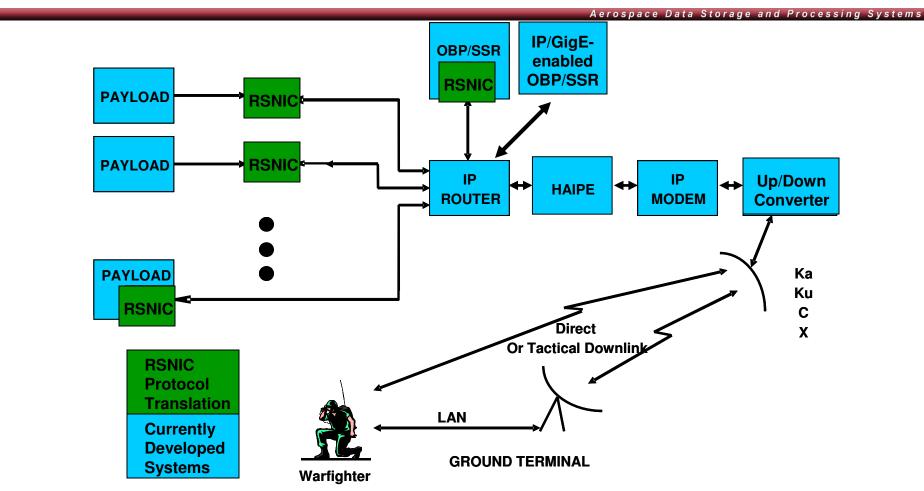
Ian Troxel, Matthew Fehringer, AJ Roberts, and Paul Murray

SEAKR Engineering, Inc. Centennial, CO

Military and Aerospace Programmable Logic Devices (MAPLD) Conference Annapolis, MD September 16-18, 2008

Motivation

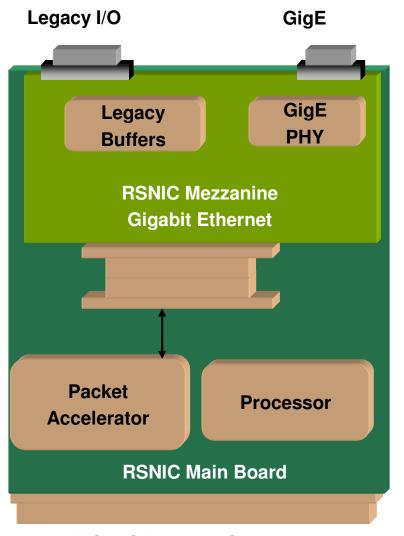
- Interconnection networks within spacecraft include mixture of disparate standards that are often custom versions for the aerospace industry
 - Buses such as Compact PCI and VME or point-to-point links such as IEEE 1394, MIL-STD-1553B, SpaceWire, RS422, etc.
- Latest commercial technology can improve performance and scalability
 - Top contenders include:
 - PCI Express with good performance but poor scalability and FT features
 - RapidIO[™] with good FT features and scalability but poor device availability
 - IP/Gigabit Ethernet, a ubiquitous standard with good all around features
- Unifying disparate protocols can improve interoperability while reducing non-recurring engineering
 - Protocol independence allows designers to focus on choosing devices that meet mission objectives regardless of interconnection standard
 - Facilitates plug-and-play payload design with virtually any sensor and any other onboard processing resource able to interconnect


Ethernet Not New to Space

- Numerous IP/Ethernet-based network components moving to aerospace
 - ARINC 664 standard Avionics Full Duplex Switched Ethernet (AFDX) [1]
 - Cisco Router in Low Earth Orbit (CLEO) [2]
 - HP ProCurve[™] Switch aboard the ISS Columbus module [3]
 - GSFC's Proposed IP-centric lunar communication network [4]
 - Transformational Satellite Communications System (TSAT) [5]
 - European Satellite Communication Network (SatNEx) [6]
- **o** SEAKR's Space Gigabit Ethernet (SGE)
 - Full compatibility with IEEE 802.11 above the physical layer
 - Demonstrated with COTS switches, hubs, etc. and remote access via Internet
 - Space-qualified physical device tested to meet a range of mission specifications
 - Using custom physical protocol transparent to Ethernet MAC and above layers
 - Upcoming flight delivery for a 10-year GEO mission scheduled to launch Q2'09
- SEAKR's SGE forms the basis for the Reprogrammable Space Network Interface Card (RSNIC) payload concept

RSNIC Payload Concept

• RSNIC provides legacy protocol to IP/Ethernet translation to improve performance and scalability and enable plug-and-play payload design

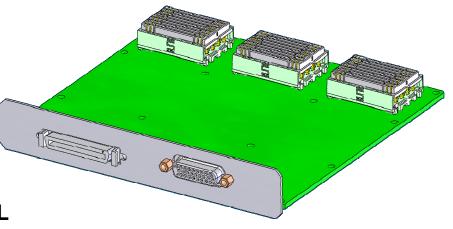

Troxel, Fehringer, Roberts, and Murray

RSNIC Interconnect Options

erospace Data Storage and Processing Systems

- RSNIC can be made to support a wide range of legacy I/O protocols
- LVDS/RS422 first interface developed
- Reconfigurability achieved by developing a new mezzanine card for each protocol with the RSNIC main board remaining the same
- RSNIC initially supports UDP over IPv4 over Gigabit Ethernet
- Support for other protocols under consideration in addition to Ethernet variations

RSNIC Design Overview


Personality Mezzanine Card

- Reconfigurability through mezzanine cards employed successfully on past projects
- AIP Personality Mezzanine for application specific functionality
 - Lower risk, quick development, lower costs
 - I/O and unique I/O connectors
 - Memory and Logic
 - TMR mitigation hardware
 - Analog circuitry ADC/DAC
- o High speed mezzanine connectors
 - 170 high speed I/O
 - LVDS
 - High speed serial
 - TMR'd signals
- Technique successfully deployed on the responsive space Advanced Responsive Tactically Effective Military Imaging Spectrometer (ARTEMIS) mission on AFRL TacSat-3

Three-connector Mezzanine Option

RSNIC Design

- Merging of programmable logic devices for application and interface performance and sequential microprocessor for ease of development
- All functionality required for protocol translation encapsulated with the single board plus mezzanine card
 - PLDs provide interface acceleration
 - Memory for PLD configuration, processor instructions, computation and packet buffering
 - Options for either hardened or nonhardened PLD with mitigation
 - RSNIC device control provided via separate Ethernet or custom interface
- Mezzanine card designs largely stay unchanged with only the interfacespecific portions requiring augmentation

RSNIC Prototype Status

Aerospace Data Storage and Processing Systems

- RSNIC prototype boards developed and verified
- Ethernet and payload interfaces confirmed to be operational via loopback and PC generated traffic
 - Currently supports 300Mbps bandwidth measured using IP/UDP protocol transfers
- **o** SSR Tech. Demonstration
 - Translate data and command traffic for the EM version of SEAKR's twochannel SSR used in NASA's Gamma-ray Large Area Space Telescope
 - Demonstration planned for September 2008

RSNIC Prototype

RSNIC Future Work

Aerospace Data Storage and Processing Systems

- Expansion to include more interfaces currently under consideration
 - SpaceWire
 - IEEE1553
- RSNIC concept application in the International Space Station
 - Perform channel aggregation where previously not implemented to improve performance and system scalability
 - Additional use to perform protocol translation to Gigabit Ethernet
- Under consideration for future missions

International Space Station

Conclusions

- Interconnection networks within spacecraft include mixture of disparate standards that are often custom versions for the aerospace industry
- o Latest commercial technology can improve performance and scalability
- Unifying disparate protocols can improve interoperability while reducing non-recurring engineering
- SEAKR's Space Gigabit Ethernet and IP-centric payload provides capable core interconnection system
- RSNIC provides legacy protocol to IP/Ethernet translation to improve performance and scalability and enable plug-and-play payload design
- RSNIC prototypes developed and under test
- o Demonstration using a SSR scheduled for September 2008
- Plan to develop additional mezzanine card options for other protocols

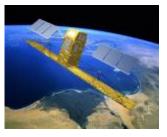
Aerospace Data Storage and Processing Systems

• SEAKR Engineering thanks the Naval Research Laboratory for funding the RSNIC research and prototype development effort and extends a special thank you to Mr. Christopher Huffine at NRL for technical oversight of the project

References

- 1. Detlev Schaadt, "AFDX/ARINC 664 Concept, Design, Implementation and Beyond," SYSGO AG White Paper, 2007.
- L. Wood, et al., "Using Internet Nodes and Routers Onboard Satellites," *International Journal of Satellite Communications and Networking*, 25(2), March/April 2007, pp. 195-216.
- **3**. R. Schmidhuber, "International Space Station welcomes aboard ProCurve Networking," *EADS Astrium Space Transportation White Paper*, January 2008.
- 4. J. Gal-Edd, "Evolution of the Lunar Network," *Proc. IEEE Aerospace Conference*, Big Sky, MT, March 1-8, 2008.
- 5. F. Yegenoglu, et al., "TSAT Advanced Network Services and Routing Architecture," *Proc. IEEE Aerospace Conference*, March 4-11, 2006.
- 6. Michel Bousquet, et al., "SATNEX, the European Satellite Communications Network of Excellence," *Proc. International Workshop on the European Union Forum on Cooperative Scientific Research*, Prague, Czech Republic June 6-7, June 2005.

SEAKR Heritage


Aerospace Data Storage and Processing Systems

PRODUCT CODE Memory Systems On-Board Processors Manned Flight Spacecraft Avionics

Satellite Communications Other-Than-Space

Launched 1992 - 1996 1997 - 2000 Clementine ACE APEX MicroLabs RadarSat NEAR Spartan MGS ACTEX

Launched SEASTAR **MARS98** P91 QuickScat **DMSP (F15) MightSat II**

Launched 2001 - 2002 Mars Odvssev GeoLITE Quickbird SAGE III HESSI MMU (Shuttle)

Launched 2003 - 2005 Coriolis ICE Sat GALEX Orbimage (3 & 4) **DMSP (F16)** Gravity Probe B MRO Swift

Launched 2005-2008 **Deep Impact** CloudSat **DMSP (F17)** Cibola P909

JEM HRDR

JEM-SSEDSU

Worldview-1

Kepler Glast

ARTEMIS **DMSP 5D3** Challenger HDAS/DAAS LEO LTMPF MAU - C&DH **MMSM** NEMO NPP **RCC-MAP** SRB SSP DSX-ECS DSX-C&DH SBSS-SSR SBSS-C&DH WBDG Worldview-2 **PST** Phoenix Lander SpaceCube **WISE-FMC** 000

Delivered

Development VPU NPOESS **SBR-OBP IADMS - NGST** SSP IRIS **Digital Channelizer RSNIC C-17 MMC** iAPS JWST SSR CEU

SEAKR's product mix shift from nearly 100% SSRs to 25 – 40% SSRs

Troxel, Fehringer, Roberts, and Murray

Unifying Spacecraft Payload Interconnects Using RSNIC

Contact Information

Aerospace Data Storage and Processing Systems

- **Dave Jungkind**
 - 303-784-7734

Business Development dave.jungkind@SEAKR.com

- **Matthew Fehringer**
 - 303-708-5254

RSNIC Program Manager matt.fehringer@SEAKR.com

Dr. Ian Troxel

• 303-784-7673

Future Systems Architect ian.troxel@SEAKR.com

SEAKR Engineering, Inc. 6221 South Racine Circle Centennial, CO 80111-6427 main: 303 790 8499 fax: 303 790 8720 web: http://www.SEAKR.com

Unifying Spacecraft Payload Interconnects Using RSNIC